• 首页关于本刊投稿须知期刊订阅编委会期刊合作查询检索English

查看全文   查看HTML全文 下载PDF阅读器  

  李强,张景发.高光谱遥感技术在建(构)筑物震害识别中的应用[J].震灾防御技术,2017,12(1):96-106, DOI:10.11899/zzfy20170110.

高光谱遥感技术在建(构)筑物震害识别中的应用
摘要:    高光谱遥感作为20 世纪空间对地观测技术重大进步的产物,通过其较高的光谱分辨率,为人们提供了丰富的地球表面信息,在各个研究领域得到了快速发展和广泛应用,并取得了卓越的成果。尽管高光谱遥感具有独特的优势,但是针对其在震害评估领域中应用的相关研究较少。本文在总结高光谱遥感的特征、优势及不同领域应用现状的基础上,开展了其在震害评估领域的应用研究。基于ASD地物波谱仪获取的建(构)筑物光谱曲线构建可用于震害分析所需的光谱特征库,对比光谱库中地物曲线之间的差异后,发现高光谱遥感在震害评估领域中的应用是可行的,因不同震害地物之间的光谱特征曲线存在差异,依据这种差异可区分不同的震害信息,从而对震害遥感图像进行精细分类。
作者单位
李强 中国地震局工程力学研究所(中国地震局工程与工程振动重点实验室), 哈尔滨 150080
中国地震局地壳应力研究所(地壳动力学重点实验室), 北京 100085 
张景发 中国地震局地壳应力研究所(地壳动力学重点实验室), 北京 100085 
关  键  词:高光谱遥感  光谱特征  地物光谱库  震害评估
DOI:10.11899/zzfy20170110
基金项目:国家自然科学基金项目(41374050)和国家高技术研究发展计划(863 计划)(2012AA121304)
收稿日期:2016-03-17
作者简介:李强,男,生于1987 年。博生研究生。研究方向为遥感震害评估。E-mail: liqiang08@163.com
通讯作者:
Preliminary Application of Hyperspectral Remote Sensing Technology in Earthquake Damage Assessment
Abstract:      As the development and major progress of the space to earth observation technology in the twentieth century, hyper spectral remote sensing has been extensively applied in various fields of research with its high spectral resolution, which provides rich information of earth surface. Although hyper spectral remote sensing is of unique superiority, no much effort has been put on seismic damage. assessment so far. Based on the summary of the characteristic advantages and application situation, earthguake damage assessment is carried out by using hyper spectral remote sensing. A typical damaged feature spectral library is constructed through collecting the spectral characteristic curves of different structures. The difference between the different spectral curves was identified, and the relationship between spectral curve and seismic damage information was explored. Our results suggest that it is feasible to apply hyper spectral remote sensing in earthquake disaster assessment. Different damage features have different spectral characteristic curves. And then, earthguake damage information can be well classified based on the spectral differences.
Keywords:  Hyper spectral remote sensing  Spectral feature  Spectral library  Earthquake damage assessment
关闭