• 首页关于本刊投稿须知期刊订阅编委会期刊合作查询检索English

查看全文   查看HTML全文 下载PDF阅读器  

  闫丽莉,温少妍,高文晶,刘传军,杨甜.整点气温缺测的插补方法研究及其初步应用[J].震灾防御技术,2019,14(2):446-455, DOI:10.11899/zzfy20190218.

整点气温缺测的插补方法研究及其初步应用
摘要:    长期连续完整的历史气温资料是震前气温异常判别研究的重要数据基础。本文考虑了参考站与缺测站之间的距离,建立改进的线性回归模型。利用该模型插补缺测和错误的气温整点值数据,在一定程度上解决了长期连续观测数据缺测的情况。通过对收集的唐山观测站气温整点值数据进行插补,并应用插补完整的数据分析研究了2012年5月28日唐山4.8级地震前兆异常。结果表明:①插补值与其前后观测值衔接吻合,插补后完整连续数据符合夏高冬低的年变规律;②插补误差在±0.5℃范围内的比例为60.2%,在±0.8℃范围内的比例为80.3%,其误差绝对值大于1.0℃的比例为9.6%,平均绝对误差为0.84℃,插补值与观测值的相关系数大部分在0.9以上;③从3月27日起出现增温异常,特别是震前2天增温幅度约8℃。
作者单位
闫丽莉 天津市地震局, 天津 300201 
温少妍 新疆维吾尔自治区地震局, 乌鲁木齐 830011 
高文晶 天津市地震局, 天津 300201 
刘传军 天津市地震局, 天津 300201 
杨甜 山西省地震局代县中心地震台, 山西忻州 034200 
关  键  词:整点气温  插补  线性回归  地震
DOI:10.11899/zzfy20190218
基金项目:中国地震局三结合课题“气温在地震监测中的初步应用”(2018008),天津市地震局青年基金“缺测整点气温的插补方法研究及初步应用”(20141021),新疆地震局基金项目(201802)
收稿日期:2018-09-17
作者简介:闫丽莉,女,生于1983年。工程师。主要从事地震前兆数据处理和卫星红外遥感在地震监测中的应用研究。E-mail:yanlili_2003@163.com
通讯作者:温少妍,女,生于1985年。工程师。主要从事InSAR同震形变场和震源破裂过程反演研究工作。E-mail:wenshaoyan999@163.com
Interpolating Method for Missing Data of Integral Point Temperature and Its Preliminary Application
Abstract:      The analysis of the temperature anomaly before earthquakes is based on the continuously historical air temperature data. The improved linear regression model is established in this paper in consideration of the distance of reference sites and missing observation sites. This model is used to interpolate hourly temperature data of missing and incorrect observations, which can partially help to solve the problem of long-term continuous observations data missing. The observation data from 15 sites were interpolated with the improved linear regression method and the interpolated data were applied to the Tangshan MS 4.8 earthquake that occurred on May 28, 2012. Our results suggest that: ①The interpolated data are consistent with its pre and post observation and the complete temperature data have the annual variation characteristic of higher in summer and lower in winter; ②The probability of error in temperature range ±0.5℃ is about 60.2%, and the error in ±0.8℃ is about 80.3%. The absolute error over 1.0℃ is 9.6% and the mean absolute error is 0.84℃. The correlation coefficients between interpolated and observed data are generally greater than 0.9; ③The complete interpolated temperature data of Tangshan site were applied to study the Tangshan earthquake, 2012. The results show that the temperature increasing anomaly was found on May 10, 2012, when the temperature increased 8℃ two days before the quake.
Keywords:  Integral point temperature  Interpolating  Linear regression model  Earthquake
关闭