• 首页关于本刊投稿须知期刊订阅编委会期刊合作查询检索English

查看全文   查看HTML全文 下载PDF阅读器  

  韶丹,高贞贞,田勤虎,张炜超,任浩.遗传神经网络在烈度评估中的研究与应用[J].震灾防御技术,2020,15(4):749-756, DOI:10.11899/zzfy20200409.

遗传神经网络在烈度评估中的研究与应用
摘要:    准确判定极震区烈度是震后应急工作高效开展的重要基础。收集1966—2017年发生在中国大陆地区MS 5.0以上有详细烈度记录的地震事件322例,选取与极震区烈度有关的7个因子进行主成分分析,将提取的主成分确定为BP神经网络的输入,极震区烈度为输出,在遗传算法优化的基础上,构建用于极震区烈度预测的BP神经网络模型。结果显示,与传统模型相比,神经网络模型在预测误差分布、精度和预测结果正确率等方面都具有明显的优越性。
作者单位
韶丹 陕西省地震局, 西安 710068 
高贞贞 西安交通大学, 信息与通信工程学院, 西安 710049 
田勤虎 陕西省地震局, 西安 710068 
张炜超 陕西省地震局, 西安 710068 
任浩 陕西省地震局, 西安 710068 
关  键  词:主成分分析  遗传算法  BP神经网络  极震区烈度  模型
DOI:10.11899/zzfy20200409
基金项目:中国地震局地震应急青年重点任务(CEAEDEM201915)
收稿日期:2020-06-11
作者简介:韶丹,男,生于1985年。硕士,高级工程师。主要从事地震应急及震灾评估工作。E-mail:258954278@qq.com
通讯作者:
Application Research of Genetic Neural Network in Seismic Intensity Evaluation
Abstract:      Accurate and rapid determination of seismic intensity in meizoseismal area is an important basis for efficient post-earthquake emergency work. In this paper, 322 earthquake events of MS 5.0 or more occurred in the mainland of China are collected. Seven factors related to the intensity of the epicenter are selected and principal component analysis is carried out. The extracted principal component is determined as the input of BP neural network when the intensity of the epicenter is the output of the network. Based on the optimization of genetic algorithm, a model for intensity prediction in epicentral area is constructed. Finally, the new model is compared with three traditional ones, and the results show that the neural network model constructed in this paper has obvious advantages in prediction error distribution, accuracy, as well as correctness of prediction.
Keywords:  Principal component analysis  Genetic algorithm  BP neural network  Seismic intensity in meizoseismal area  Model
关闭